
Integrating Lean Processes and Engineering
Discipline into Work Culture Over 20 Years: An

Experience Report
Doug Durham

Don't Panic Labs
Lincoln, Nebraska, USA

Email: ddurham@dontpaniclabs.com

Bonita Sharif
University of Nebraska - Lincoln

Lincoln, Nebraska, USA
Email: bsharif@unl.edu

Abstract—The paper presents an experience report for Don’t
Panic Labs (DPL), a software and consulting company, outlining
the cultural shift in building software using lean processes and
engineering principles over 20 years. The shift was intentional
due to failures of prior projects. Challenges are identified
along with opportunities to address them. An evolution of the
company culture is explained via themes that were incorporated
chronologically over time, which resulted in reducing errors in
judgment, leading to reliable and predictable successes. Two
factors, namely, the percentage of rework and co-creation sessions
for efficient iteration of requirements, stand out as significantly
impacting project success. Lessons learned with discussion and
impact to the profession and education are presented.

Index Terms—experience report, lean processes, agile, systems

I. INTRODUCTION AND BACKGROUND

Much has changed in the world of software development
over the last 30 years [1], [2]. From the focus on client-server
and desktop application development in the 1990s, to the
advent of distributed computing in the early 2000s, followed
by the rapid adoption of mobile devices as a computing client
in the early 2010s. In 2011, Marc Andreessen (creator of
Mosaic, the first Web browser) wrote an essay [3] discussing
how software was eating the world and that some day there
would be no industry left untouched by software. The last
10 years have seen an explosion in cloud-based systems and
services that enable sophisticated service-based systems. The
advancement of these technologies has allowed businesses to
see software as a means of solving difficult problems and to
enable them to differentiate themselves from their competition.
Recently, the maturity and widespread availability of machine
learning and other AI-based systems [4], [5], [6] and services
have opened up a whole new set of possible problems to solve.

Along the way, the development community has been
absorbing and adopting processes and methods based upon
the principles of the Agile Manifesto [7] with the hope that
these will help them succeed with their software projects.
Sadly, as an industry, we still struggle to consistently create
successful outcomes (budget, quality, timeline, user satisfac-
tion). Stakeholders do not have the same confidence level in
our ability to manage these projects as stakeholders of other

engineering disciplines. Our industry’s inability to effectively
manage the complexity of developing these complex systems
results in a significant percentage of projects being over budget
or canceled outright [8]. Even projects that get delivered often
result in significant effort devoted to rework [9] (time spent
on defects) during the support and maintenance phase of the
life-cycle, draining resources away from other priorities.

Systems engineering processes and methods at McDonnell
Douglas’ MacAir division (where the first author initially
worked), that built software for military aircraft avionics
systems integration, in the early 1990’s were rigorous and
disciplined, if not heavy and burdensome. The net result was
a significant shared understanding of what needed to be done,
what the status of that effort was, and the quality of the efforts
at the end. This shared understanding spanned not only various
stakeholders within the company but also the customer and
end-users. While timelines often changed, it was extremely
rare for a project to fail due to technical, quality, or usability
reasons. By contrast, the normal experience working in a
commercial software company that builds software for health-
care practice management and electronic commerce from the
mid-1990’s until around 2005 was anything but rigorous and
disciplined [10]. This experience of dealing with different
domains and companies can only be described as chaos.

Relying solely on the principles of the Agile Manifesto [7]
will not allow us to manage the ever-increasing complexity
of the software systems being developed today. The lack of
widespread technical maturity of our development community
and their lack of understanding of the software engineering
body of knowledge (SWEBOK) [11] will result in significant
errors in judgment, lost productivity [12], frustrated stake-
holders, and unpredictable outcomes. The principal hypothesis
is that software development could achieve the predictable
outcomes of other engineering disciplines, without sacrificing
the agility that comes with building systems in software and
without requiring exceptional efforts or talent from the teams
involved [13]. The journey and evolution (Section III) is the
result of efforts to prove this hypothesis.

This paper will review the experience of Don’t Panic Labs
(DPL), which recognized the multiple dimensions of complex-



Fig. 1. Survey results: Knowledge of SWEBOK [11] among 73 practitioners.

ity to be managed and that individuals make decisions daily
that contribute to the success or failure of these projects. This
realization led us to take active steps to go beyond simple agile
methods to identify and integrate tools, techniques, methods,
and processes that have enabled us to effectively manage these
dimensions of complexity to create more predictable outcomes
by reducing errors in judgment resulting from leaving those
judgments and individual decisions to chance.

II. CHALLENGES AND OPPORTUNITIES

According to the CHAOS Report [8] from The Standish
Group, in 2020 only 31% of all software projects are on
time and on budget. There are still a significant number
(19%) of projects failing. These statistics are for projects of
all sizes. A corollary issue is the impact of these struggles
on the productivity and efficiency of the development teams,
which comes in the form of rework. Rework [9] is another
term for corrective maintenance and is the amount of time
spent addressing defects in a project after it was claimed
complete and correct, regardless of the source of the defect.
It is estimated that software projects spend more than 50% of
their effort on rework, leaving only half of the throughput
of an organization available to advance the software with
new features [9], [14]. From our observations and experience
having worked on numerous projects, we have identified
two causes for this inability to have reliable and predictable
success.

Lack of Software Engineering and Design Literacy: Soft-
ware Engineering, as a field of undergraduate study, is still
uncommon. There are a number of experienced individuals in
industry who entered the field with little, if any, formal college
education. In addition, we have a large percentage of program-
mers that identify as end-user programmers [15]. Given the
diverse backgrounds and education of individuals, there is a
broad lack of understanding and familiarity with the software
engineering body of knowledge. We surveyed 73 practitioners
at two local dev conferences from varied organizations with
varying levels of experience and it is quite clear that there
is a basic lack of understanding of the various knowledge
areas (see Figure 1). While practitioners understandably gain
some skill and experience on-the-job, it is clear from Figure 1
that they are not starting with a sufficient baseline. Without

a foundational understanding of this body of knowledge and
with only one’s experience and informal self-education to
lean on, it is not hard to understand that errors in judgment
will often occur. This ultimately results in the struggle many
teams face in delivering software designs and implementations
without simultaneously introducing defects [16] and code
smells [17].

Inefficient Iteration and Learning: The second cause we
have observed is related to how development teams iterate
and learn throughout the development process – both in terms
of efficiency and effectiveness. One need only look at the
amount of effort development teams spend on rework to
understand that 1) there is a lot of iteration and learning
happening during the coding phase and 2) there are likely
opportunities to improve efficiency in how we are learning
and iterating [9]. One of the key observations we made is
that it is challenging for teams to ensure they have a shared
understanding without deliberate effort. There seems to be
a bias in many organizations to limit the amount of critical
thought and analysis upfront in favor of getting in and writing
code. While the latter does not mean a project will ultimately
fail, it should be acknowledged that iterating on the design
of a software system in code is way less efficient than using
critical thought and abstractions (wireframes, white papers,
architecture design documents, etc) before implementation
starts. Missed milestones and budget overruns are likely if
iteration is not done correctly. One of the key benefits we
find with structured tools that require individuals to express,
visually or in words, their understanding of the design or the
requirements is that it often reveals 1) differing understandings
between team members of details that were thought to be well
understood, and 2) implicit assumptions people make about a
system that had not previously surfaced.

Opportunities: We fundamentally believe it is not unrea-
sonable to expect project success (on time and on budget) in
the vast majority of software projects. The key to obtaining
this level of success hinges on our ability to move the
software development industry in close alignment with the
other engineering disciplines. It is generally accepted in our
industry that a “rock star” programmer can be 10 times more
productive than an average developer. In order for predictable
outcomes to be the norm in every organization, we need to
eliminate our reliance on “rock star” performers as it is not
sustainable. The path away from this reliance is to elevate the
rest of the development community by 1) educating them on
the SWEBOK, 2) standardizing a set of system design patterns
that can be understood and effectively put into practice by
the average developer, and 3) create a series of processes and
tools that enable critical thinking and shared understanding in
all phases of development. The end result of this should be
complex problems that are routinely and predictably solved by
“rank and file” engineers. This opportunity for training also
works well if tied to the local university curriculum (e.g., [18])
where software engineering degrees are offered, which is what
DPL supports, engages in, and promotes.



III. EVOLUTION OF COMPANY CULTURE

Don’t Panic Lab’s culture and processes have evolved over
roughly the last 20 years. The primary triggers are continuous
reflection and identification of recurring challenges and ineffi-
ciencies that were preventing predictable/successful outcomes.

A. Formalizing Management of Projects

Coordination between stakeholders and the development
team was done informally and put a lot of pressure on
developers. A need for a project manager role, who would
be accountable for coordinating between all stakeholders and
the developers, to ensure proper tracking and prioritization
of requirements was created. This role formalization led to
additional benefits including the development of a method for
tracking our “system” for developing software along with the
value propositions [19] of each component of this system, with
periodic reviews to ensure we were only following processes
that created the value we desired. Rather than simply taking
a feature or other requirement and applying some ad hoc
estimate, we defined a set of possible estimates that include
half day, 1 day, half week, 1 week, or more than a week.
If a requirement is determined to take more than a week,
it is further decomposed such that no individual estimate is
greater than a week and, ideally, all individual estimates are
half week or less. The basic premise is that large individual
estimates represent significant uncertainty in understanding
a given requirement and by breaking the requirement down
reduced the risk of not hitting our estimates.

B. Structuring Quality Assurance Efforts

A recurring challenge was knowing whether our quality
efforts were effective and when the software was ready to be
released into production. It was also becoming very difficult
to support the complex systems in production in terms of
debugging issues that arose and having the confidence to
refactor or redesign portions of the systems with no unintended
changes to behaviors. Addressing these concerns involved
three separate efforts. First, the quality assurance processes
were changed to ensure that there would be formal test plans
developed for testing new functionality and regression testing
existing functionality. These formal test plans made it possible
to track progress of test plan execution and success, making
it easier to determine release readiness and project release
timelines. The second effort was to adopt a formal process
for collecting additional data on defects that allowed for the
calculation of a defect detection rate (percentage of defects
found before the end user found them) with the goal of keeping
it above 90%. The third effort was the adoption of automated
testing tools for unit, integration, and system-level testing. Not
only did this improve the quality of the code in development,
but it also created a suite of automated regression tests, which
reduced the risk of addressing production issues with hotfixes.

C. Shifting Quality Assurance Accountability to Developers

Even with the structuring of quality assurance efforts, we
still were experiencing frequent thrashing of code changes

where 1) a developer would make code changes, 2) release
code to test environments, 3) quality assurance would quickly
find a defect, 4) bug would be written, 5) developer would
make code changes... repeating the cycle many times. We came
to the realization that the quality assurance team became a
“crutch” for the development team, who felt no real ownership
or accountability for making sure their code was solid and
defect free before releasing to the test systems. It was felt
to be critically important to shift this accountability to the
developers and the solution was to reduce, or completely elim-
inate, the availability of quality assurance personnel on future
projects. This rapidly changed the culture of the development
team and quickly shifted the focus to increased investment in
test automation and adoption of continuous integration tools
that gave the development team immediate feedback on the
quality of the code being merged into primary branches. When
the continuous integration quality checks failed, there was an
immediate effort to resolve the issue before moving forward
with other development efforts. It also triggered the adoption
of a layered approach to quality where no one quality practice
(unit testing, desk checking, integration testing) could achieve
our defect detection goals but the combination of all of these
practices during a project would get us there.

D. Increasing Developer Efficiency

We became aware of an essay written by Paul Graham
of Y Combinator [20] that profoundly changed the way we
thought about the impact of daily interruptions and how we
viewed barriers to developer productivity. The basic premise
of the essay is that people who are “makers” (i.e., developers)
need large blocks of time to get into the problem before
they start to really become productive. Interruptions every
hour or two for a meeting kept this from happening. First,
we immediately scrutinized both the meetings that we were
requiring developers to be a part of and when those meetings
were occurring. As a goal, we attempted to have these meet-
ings early in the day. The second significant change involved
how we configured the development environments of the
individual developers. Historically, testing the code we were
working on would often involve interaction with one or more
development servers that would be shared by all members of
the team. Shared database servers were the worst offenders.
Solving this problem involved two significant changes to our
development environments: 1) we choose technologies and
system architectures that allowed developers to do most, if not
all, integration testing on their own machines, independent of
other developers, and 2) we adopted a configuration manage-
ment strategy and toolset (e.g., DbUp)1 for database schema
configurations that allowed developers to make changes on
their local machine database that would be merged into a
common database configuration repository.

E. Increasing Design Stamina

The realization we had is that there was no coherent design
process enabling the system to be built as if one person had

1https://dbup.readthedocs.io/en/latest/



done all the design. Instead, we had systems that were built
with each part of the system reflecting independent design
decisions (design whim) of the person writing the code. Com-
pounding this problem is that the code and design reflected
the skill (or lack thereof) of the developer even though there
were highly skilled engineers who could improve the design.
The changes we made to address these problems have likely
had the most significant impact on our development maturity
and our ability to design and develop systems with confidence.
Addressing the lack of coherent system design required us to
adopt a methodology for decomposing systems that could be
used by experienced architects and followed by development
teams. We were introduced to such a methodology that was
developed by Juval Löwy2 that was inspired by the work
of Parnas who strongly advocated for designing systems for
change using a technique for decomposition that he called
information hiding [21]. Two key processes were adopted:
a structured design analysis document template to reason
through requirements and a code review pull request model.
This impacts developer efficiency by allowing them to move
between teams with little technical friction.

F. Interaction Design Specialization

Until very recently (last 10-15 years), it has been possible
to design user interfaces for software systems by allowing
individual developers to make layout and workflow choices or
to use layout automation tools and templates for web pages.
The increasing sophistication of more contemporary software
systems, along with the need to support multiple platforms
(e.g., multiple web browsers and computing platforms such
as desktop, laptop, tablets and mobile devices) has made this
approach not only impractical but also a liability that can
impact the success or failure of a system. Recognizing this
threat, we began to hire and develop specialized talent that was
focused on developing an understanding of best practices for
interaction design and the process and techniques that can be
used to rapidly express user experiences in a way that validates
the design with the end user and stakeholders and provides suf-
ficient guidance to the developers to ensure implementation of
the intended design. Separating the responsibility for designing
the user experience from the implementation requires close
coordination of both parties to ensure that what is designed is
feasible and to limit the use of non-standard custom controls
in favor of existing reusable controls.

G. Increasing Visibility into Project Progress

Even with all of the above changes to reduce uncertainty of
outcomes and errors in judgment, there is always going to be a
remaining risk that can impact the outcome (budget/schedule)
of a project. Identifying the presence of this risk as early as
possible can provide more options for mitigation as opposed
to when the risk is identified late in development. One of the
key challenges preventing early risk identification is the ability
to reliably and confidently understand project progress at any
point in time. Addressing this challenge involved adopting

2https://www.idesign.net/Services/System-Design

established earned value management [22] as a technique
for tracking project progress. Leveraging our previously men-
tioned discrete estimation technique (Section III-A), we are
able to establish an anticipated project schedule based on
the estimates of planned work and then track that against
the schedule for both completed work and total actual effort.
Adopting this tool has led to earlier identification of technical
risk and requirements uncertainty and has become a valuable
tool for collaborating with stakeholders to manage constraints.

H. Increasing Iteration/Learning before Coding

Learning and iterating based upon the learning is necessary
for all projects to increase the likelihood of a successful
outcome relative to customer satisfaction. Historically, the
majority of this learning and iteration occurs within the coding
phase, but it is expensive if done this way. We strongly
believed that moving to an approach where, 80% of the
learning and iteration happened prior to coding would yield
great benefits to our clients and project outcomes. Rather than
relying on product owners and stakeholders sole understand-
ing of the requirements, a lightweight, structured co-creation
process is used that allows for the discovery of the impacts
and outcomes that are motivating the project. When possible,
these interaction design artifacts are augmented by developing
testable requirements (e.g., using Gherkin Syntax3) which al-
lows stakeholders and developers to collaborate in the creation
of human-readable, non-technical test cases that uncover edge
cases and alternate outcomes prior to development and also
provide a strong basis for acceptance testing criteria.

IV. LESSONS LEARNED

Our own personal journey was a series of steps in which we
tackled some aspects of our inefficient development processes.
When we were asked by other organizations to help with
their own transformation, it was tempting to try to turn the
entire ship via a rapid set of simultaneous changes across the
organization. Our instincts have told us this is not feasible,
especially when you also have to bring along an entire team
of motivated but understandably skeptical people. We have
found it much more productive and sustainable to change the
organization via evolution, as opposed to revolution and to
prioritize the changes to meet the organizations where they
are at to give them confidence through incremental successes.

Another important aspect of the process of this type of
change is understanding the importance of trusted leadership
that is leading the change. Having someone “in charge” who
can build consensus within the team on what is to be changed
and why it is important will help get everyone on board. This
strong leadership is also important when consensus cannot be
reached and command decisions are necessary and in the best
interest of the organization. At some point during our own
evolution, we began to realize that the real problem we were
trying to solve was to eliminate outcomes being left to chance.
Once we identified this core goal, it became easier to identify
where the holes were in our processes and methods. We could

3https://cucumber.io/docs/gherkin/reference/



also begin to prioritize the desired changes based on the risk
associated with the hole that was found.

Finally, once we started seeing a significant change in
the successful outcomes of projects and the long-term main-
tainability of our system designs, we noticed that the rank
and file members of our team moved from adoption of our
patterns and practices with successful outcomes, to strong
advocacy for them. Once we got the heavy flywheel spinning,
the momentum continued carrying us forward, and more and
more members of the team were focused on ensuring we were
following our processes and looking for ways to improve them.
This is how we knew we sustainably changed the culture.

We briefly elaborate on how the evolutionary steps (Sec-
tion III) are measurable. For project management formal-
ization, improvement in earned value performance vs. plan
(project timeline and budget adherence (+/- 25%)), and stake-
holder satisfaction (via the net promoter score [23]) need to
be tracked. For quality assurance efforts, project-level defect
detection rate (within a sliding window) is a key metric.
DPL targets a 90% defect detection rate. A good metric for
developer efficiency would be percentage of time spent on
rework [12] from the last 6-12 months. Design stamina can
be measured by change in velocity over time, as new features
are added. One can track if something that was easy to change
five years ago is now more difficult, which means increased
friction. Good estimation plays a role as well. Developers can
be prompted as part of a pull request to comment on whether
the initial estimate was good. The rest of the evolutionary
steps point to process and role changes. For example, we
currently have invested in five dedicated interaction designers
at DPL. They work with end users to create workflows as part
of the design and requirements process during iteration and co-
creation sessions. As part of employee engagement, DPL has
used Lattice (https://lattice.com/) for the past 4 years, which
produces a pulse score for managers each week, because team
dynamics / human factors [24] are also critical.

V. DISCUSSION AND IMPACT

Our experience evolving our organization to reduce errors
in judgment and to build and adopt a comprehensive “system”
for developing software has allowed us to achieve regular
success on dozens of innovation projects over the last 10 years.
As an example, Figure 2 demonstrates how adopting many
of the themes above by one particular project substantially
reduced the amount of rework experienced, cutting it almost
in half within a 6-year period. We have noticed a strong
desire within our development teams to protect this culture
and to actively avoid opportunities with other organizations
where we might have to subject ourselves to less rigorous and
disciplined patterns and practices. We have come to realize that
the success our development teams experience aligns with a lot
of the motivations for entering this career field. By and large,
we have been able to eliminate those negative experiences
(missed milestones, poor quality, frustrated end users, etc) that
many development teams still experience.

Another impact of this work is on the approach to ed-

Fig. 2. Rework (labor hours spent on defects/labor hours spent overall) in
two teams (named Team A and Team B for anonymity) between 2017-2022.
Work items were coded as rework by project managers at DPL.

ucation [25] and professional development. Software devel-
opment, like many other fields of engineering, involves a
number of tradeoffs when making decisions along with non-
deterministic solutions to system designs. When we look at
the way most education is structured, it tends to be focused
on more deterministic, small-scale problems. As a result, most
people coming out of education programs lack 1) experience
with the non-deterministic nature of the design of larger,
more complex systems, 2) sufficient knowledge or experience
with core principles such as cohesion and coupling [26] and
information hiding such that they can use these principles to
make good judgments within design decisions, and 3) very
little familiarity with the vast majority of the knowledge areas
within the SWEBOK (evidenced by our survey in Figure 1).
The net result is that we often see organizations where there
is little understanding of the impact of their decisions and
a lack of appreciation for the need to manage the complexity
of their projects to ensure positive outcomes. Their solution to
meeting project challenges is just more coding (“fingers on the
keyboard”) as opposed to more critical thinking and leaning on
what is known about our field. We strongly advocate that the
approach to educating future software engineers must change
to address these deficiencies. Some of these changes can
be done by incorporating co-creation sessions and industry
working sessions like DPL has provided at University of
Nebraska - Lincoln in the software engineering requirements
elicitation course and senior capstone projects with faculty.

VI. CONCLUSIONS AND FUTURE WORK

We present an overview of the significant challenges Don’t
Panic Labs software development teams faced that led to errors
in judgment and unpredictable outcomes of their development
projects. We also review steps the company took to evolve
the organization and culture to successfully address these
challenges over a 20-year period. As part of future work,
we plan to conduct a field study tracking the evolutionary
metrics such as work items, estimation, and rework on future
projects. Furthermore, we seek to create educational mate-
rial/case studies that would allow other organizations and
universities to benefit from these experiences and confidently
and effectively evolve their own organizations and software
engineering teaching practices with similar success.



REFERENCES

[1] T. D. LaToza, “Crowdsourcing in software engineering: Models,
motivations, and challenges,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). Los Alamitos, CA, USA: IEEE Computer Society, may
2019, pp. 301–301. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/ICSE-SEIP.2019.00043

[2] F. P. Lima, W. Viana, M. F. Maia, R. C. Andrade, M. Castro, J. F.,
and L. S. Rocha, “Ubiquitous software engineering: Achievements,
challenges and beyond,” in 2013 27th Brazilian Symposium on Software
Engineering. Los Alamitos, CA, USA: IEEE Computer Society, sep
2011, pp. 132–137. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/SBES.2011.33

[3] Marc Andreessen, “Why software is eating the world,” https://a16z.com/
why-software-is-eating-the-world/, 2011, accessed: 2024-08-15.

[4] C. K. Tantithamthavorn and J. Jiarpakdee, “Explainable ai for software
engineering,” in Proc. of the 36th IEEE/ACM Intl Conf on Automated
Software Engineering, ser. ASE ’21. IEEE Press, 2022, p. 1–2.
[Online]. Available: https://doi.org/10.1109/ASE51524.2021.9678580

[5] S. Martı́nez-Fernández, J. Bogner, X. Franch, M. Oriol, J. Siebert,
A. Trendowicz, A. M. Vollmer, and S. Wagner, “Software engineering
for ai-based systems: A survey,” ACM Trans. Softw. Eng. Methodol.,
vol. 31, no. 2, apr 2022. [Online]. Available: https://doi.org/10.1145/
3487043

[6] A. Bendimerad, Y. Remil, R. Mathonat, and M. Kaytoue, “On-
premise aiops infrastructure for a software editor sme: An experience
report,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1820–1831. [Online]. Available:
https://doi.org/10.1145/3611643.3613876

[7] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “Manifesto for agile software development,” 2001.
[Online]. Available: http://www.agilemanifesto.org/

[8] The Standish Group International, “The chaos report,” www.
standishgroup.com/sample research/PDFpages/Chaos1994.pdf, 1994.

[9] S. Tockey, How to engineer software: a model-based approach. Hobo-
ken: John Wiley IEEE press, 2019.

[10] J. Voas, “A baker’s dozen: 13 software engineering challenges,” IT
Professional, vol. 9, no. 2, pp. 48–53, 2007.

[11] P. Bourque and R. E. Fairley, Eds., SWEBOK: Guide to the Software
Engineering Body of Knowledge, version 3.0 ed. Los Alamitos, CA:
IEEE Computer Society, 2014, http://www.swebok.org/.

[12] C. Jones, Applied software measurement: global analysis of productivity
and quality, 3rd ed. New York, NY: McGraw-Hill, 2008.

[13] D. Durham and C. Michel, Lean software systems engineering for
developers: managing requirements, complexity, teams, and change like
a champ. New York: Apress, 2021.

[14] D. A. Wheeler, B. Brykczynski, and R. N. Meeson, Software Inspection:
An Industry Best Practice for Defect Detection and Removal, 1st ed.
Washington, DC, USA: IEEE Computer Society Press, 1996.

[15] M. M. Burnett, “End-user software engineering and why it matters,” J.
Organ. End User Comput., vol. 22, no. 1, pp. 1–22, 2010. [Online].
Available: https://doi.org/10.4018/joeuc.2010101904

[16] B. Eken, “Assessing personalized software defect predictors,” in
IEEE/ACM 40th Intl Conf on Soft Eng: Companion Proceedings
(ICSE-Companion). Los Alamitos, CA, USA: IEEE CS, jun 2018, pp.
488–491. [Online]. Available: https://doi.ieeecomputersociety.org/

[17] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad
(and whether the smells go away),” IEEE Transactions on Software
Engineering, vol. 43, no. 11, pp. 1063–1088, 2017.

[18] M. M. Alhammad and A. M. Moreno, “Integrating user experience
into agile: an experience report on lean ux and scrum,” in Proceedings
of the ACM/IEEE 44th Intl. Conf. on Software Engineering: Software
Engineering Education and Training, ser. ICSE-SEET ’22. New
York, NY, USA: ACM, 2022, p. 146–157. [Online]. Available:
https://doi.org/10.1145/3510456.3514156

[19] R. Bavani, “Global software engineering: Challenges in customer value
creation,” in 5th IEEE Intl Conf Global Software Engineering (ICGSE
2010). Los Alamitos, CA, USA: IEEE CS, 2010, pp. 119–122. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/ICGSE.2010.21

[20] P. Graham, “Maker’s Schedule, Manager’s Schedule,” https://www.
paulgraham.com/makersschedule.html, accessed: 2024-02-08.

[21] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, p. 1053–1058, dec 1972.
[Online]. Available: https://doi.org/10.1145/361598.361623

[22] P. M. Institute, The standard for earned value management. Newtown
Square, Pennsylvania, USA: Project Management Institute, Inc, 2019.

[23] J. G. Dawes, “The net promoter score: What should managers know?”
Intl Journal of Market Research, vol. 66, no. 2-3, pp. 182–198, 2024.
[Online]. Available: https://doi.org/10.1177/14707853231195003

[24] P. Lenberg, R. Feldt, and L. Wallgren, “Human factors related
challenges in software engineering – an industrial perspective,” in
2015 IEEE/ACM 8th Intl Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). Los Alamitos, CA, USA:
IEEE Computer Society, may 2015, pp. 43–49. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CHASE.2015.13

[25] C. Ghezzi and D. Mandrioli, “The challenges of software engineering
education,” in 27th International Conference on Software Engineering.
Los Alamitos, CA, USA: IEEE Computer Society, may 2005, pp.
637–638. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ICSE.2005.1553624

[26] S. Tiwari and S. S. Rathore, “Coupling and cohesion metrics for
object-oriented software: A systematic mapping study,” in Proceedings
of the 11th Innovations in Software Engineering Conference, ser.
ISEC ’18. New York, NY, USA: ACM, 2018. [Online]. Available:
https://doi.org/10.1145/3172871.3172878


