
Exploring How Developers Layout UML Class
Diagrams

Bonita Sharif
School of Computing

University of Nebraska - Lincoln
Lincoln, Nebraska USA
Email: bsharif@unl.edu

Nathaniel Liess
Department of Electrical Engineering

University of Nebraska - Lincoln
Lincoln, Nebraska USA

Email: nliess2@huskers.unl.edu

Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent, Ohio, USA

Email: jmaletic@kent.edu

Abstract—The paper presents a video-based exploratory study
that seeks to understand how developers modify UML class
diagram layouts for better readability and comprehension of the
system. Two diagram layouts showing a model subset from a Java
open-source system are presented to six participants experienced
in reading UML class diagrams. They are tasked to change the
layout to make it easier for them to read and comprehend.
The video is reviewed for major modifications to the layouts.
Behaviors observed are presented. The eventual goal is to use
this information to construct heuristics for automated layout
algorithms based on semantics and architectural importance.

Index Terms—UML class diagrams, layout, exploratory study

I. INTRODUCTION

Several researchers have examined the problem of con-
structing different layouts for UML [1] class diagrams. These
layouts mainly prioritize general (graph-based) aesthetics to
produce less clutter. For example, they tend to minimize edge
crossings, use 90-degree bends for edges, and use hyper-edges
for the hierarchies. These layouts are generally better than
those generated from state-of-the-art tools for UML modeling
that typically do not prioritize a set of aesthetic criteria.

The orthogonal layout [2] for UML class diagrams is
popular as it produces an aesthetically pleasing diagram via
the minimizing of edge crossings, bends, and lengths while
also maximizing symmetry. The layout scheme does not use
any semantics from the UML model itself to drive the layout.
To bridge this gap, we presented a pilot study to test if
class stereotypes [3] of entity, boundary, and control classes,
can help improve the layout of diagrams and found that the
clustered layouts performed better in comprehension tasks. In
particular, the multi-cluster layout, where each cluster repre-
sents a concept in the system, is compared to the orthogonal
and three-cluster layout, where each class stereotype is placed
in one of three clusters of entity, boundary, and control. We
presented several other studies [4] after our initial pilot that
continue to show that clustered layouts perform better than
orthogonal ones for different tasks.

The above studies are tested on existing layouts produced
by researchers. We are not aware of any studies that explore
how a developer modifies an existing UML class diagram
layout. To bridge this gap, we conduct an exploratory study to
understand strategies developers use to modify a UML class

diagram layout with the goal of improving comprehension.
Our research question is: What strategies do developers use to
modify layouts of UML class diagrams to better comprehend
the software system? A small pilot study observing six devel-
opers produces some guidelines observed. The eventual goal
is to conduct a larger study to articulate behaviors that can be
built into a layout modification algorithm in existing tools.

II. STUDY OVERVIEW

The goal of this study is to understand how software
engineers modify an existing UML class diagram layout. The
diagram is shown in a random layout generated by the default
setting in the modeling tool. They are expected to produce a
more readable and comprehensible layout.

The participants are six graduate students and faculty re-
cruited from an advanced software engineering course at Kent
State University and the University of Akron in Ohio, USA.
The participants volunteered for the study and use UML for
design in graduate classes and research during their Ph.D.
program.

The study consists of two layout modification tasks based on
the JEdit open-source Java system. The system is first reverse
engineered to produce a UML model. A subset of the model is
then imported into MS Visio and the default orthogonal layout
is used to generate a starting layout for participants to begin
modifying. See Figure 1 for the two initial layouts in the JEdit
system. There is relatively little overlap between the two sub
models to avoid learning effects or biases. The diagrams have
class stereotype information via textual annotations above the
class name and via color (boundary classes are green, control
classes are red, and entity classes are blue).

The study was approved by the Institutional Review Board
at Kent State University. The participants are seated in front
of a monitor where the diagrams are presented in MS Visio.
Their screen is recorded via an external camcorder. Audio is
also recorded as they are encouraged to think aloud. They are
prompted to modify the layout to make it more readable and
comprehensible to them based on how they understood the
model. They are asked to move and rearrange the diagram
as they liked. They are asked not to delete any classes or
relationships. The study took approximately 45 minutes on
average for both tasks. The videos are then reviewed for



Fig. 1. The JEdit UML class diagrams presented in random layout for Task 1 (left) and Task 2 (right).

major modifications made by the participants to the diagrams
to determine any trends in behavior. The main behaviors
of interest are moving a class, changing the shape of a
relationship, joining of inheritance arrows, making inheritance
read in the typical top down way, moving related classes closer,
to name a few.

III. COMMON OBSERVATIONS

After reviewing the videos, we found some common behav-
iors in each of the two tasks.

For the first task, the control class DisplayManager is
moved around at different locations in the layout. Participants
also add extra space around the FoldHandler boundary
class. In the second task, participants focused on making the
lines straight instead of bent. The class JEditTextArea
is moved closer to the class View. Participants also moved
pairs of classes close to each other - in particular Buffer
and BufferSet. A few participants switch the order of
the Enhanced Button class and the RolloverButton
class. Finally, we noticed that the JEdit class is moved to
the right to make space for the Buffer and BufferSet
classes.

Finally, even though we ask participants to think out loud
while they are performing the layout modification, they very
rarely spoke and verbalized their thoughts.

IV. DISCUSSION AND CONCLUSIONS

This exploratory study gave us some indication on how
developers go about modifying a layout. First, it signaled to
us that the task of arranging a layout is inherently difficult for
most people. Many of the developers just read the diagram for
a while before making any modifications. This indicates to us
that we should probably attach a comprehension task to each
diagram instead of asking the developer to just rearrange it for
overall readability and comprehension.

We did not uncover many insights on specific patterns but
point out the major changes for each layout. In both tasks, the

control classes of DisplayManager and JEdit are at least
touched and moved. This indicates to us that the participants
recognized these are important classes that contain a lot of
the functionality. Classes that have associations but that are
placed farther in the initial layout are brought closer together
during the modification process indicating that if classes have
associations, they should have a priority to be placed closer to
each other. The state-of-the-art tools do not always prioritize
this closer placement.

In hindsight, providing a specific task of comprehension or
use of the diagram to solve a specific problem might have been
a better design decision instead of a general comprehension
and readability task. This is our hypotheses that can be tested
in a followup study. If this indeed is the case, then it indicates
that the layout should change based on the type of task being
done. A task-dependent layout for class diagrams might make
more sense where the developer is able to switch seamlessly
between different layouts that are more conducive to certain
tasks.

ACKNOWLEDGMENT

This work is supported in part by the US National Science
Foundation under Grant Number CCF 18-55756.

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language
user guide, 2nd ed. Upper Saddle River, NJ: Addison-Wesley, 2005.

[2] M. Eiglsperger, C. Gutwenger, M. Kaufmann, J. Kupke, M. Jünger,
S. Leipert, K. Klein, P. Mutzel, and M. Siebenhaller, “Automatic
layout of uml class diagrams in orthogonal style,” Information
Visualization, vol. 3, no. 3, pp. 189–208, 2004. [Online]. Available:
https://doi.org/10.1057/palgrave.ivs.9500078

[3] O. Andriyevska, N. Dragan, B. Simoes, and J. Maletic, “Evaluating uml
class diagram layout based on architectural importance,” in 3rd IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, 2005, pp. 1–6.

[4] B. Sharif, “Empirical assessment of UML class diagram layouts based
on architectural importance,” in IEEE 27th International Conference on
Software Maintenance, ICSM 2011, Williamsburg, VA, USA, September
25-30, 2011. IEEE Computer Society, 2011, pp. 544–549. [Online].
Available: https://doi.org/10.1109/ICSM.2011.6080828


